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Main environmental constraints:
§ Vacuum, Temperature

• Outgassing
§ Material evaporation
§ Recondensation (degradation of optics)
§ Outgassing of non-tight cavities (blind threaded holes …)
§ Desorption effects: e.g. deformation of composite structures because of the evaporation of the absorbed 

water
§ Chemical effects on the materials (ATOX, aging, corrosion)

• Tribology Effects
§ Change of the friction coefficient
§ Cold welding
§ Evaporation of lubricants

• Thermal Effects
§ Heat exchanges through radiation and conduction

• Mechanical Effects
§ Pressure and deformation of closed vessels, pipes, tanks, …
§ Depressurization and re-pressurization: gas flow, movement of dust particles …

• Electrical Effects
§ Modification of insulation properties
§ Corona discharge

§ Radiations, Atomic Oxygen …
§ Vibrations and Shocks

Space Environment Constraints
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Space Environment Constraints 3

Cosmic rays

Micrometeoroid

Debris

e -, p +, X-rays, h𝜈

§ Temperatures
§ Vacuum
§ Radiations
§ Space Debris
§ Micrometeoroids
§ Atomic Oxygen
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Space Environment Constraints 4

LEO
Atomic Oxygen
Meteoroids, Debris
Ultraviolet
Thermal Cycling
Vacuum

MEO
Van Allen Radiation
Meteoroids, Debris
Ultraviolet
Thermal Cycling
Vacuum

GEO
Solar Flare Protons
Spacecraft Charging
Ultraviolet
Thermal Cycling
Vacuum
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Vacuum 5

§ Interstellar medium in a galaxy such as the Milky Way:
(ref.: V. Baglin, Vacuum Systems Lecture 1, CERN 2019)

• Composed of molecules, ions atoms, cosmic rays and dust
• Atoms density:

§ 50x106 H/m3 at 100 K (~10-11 hPa) 
§ 106 H/m3 at 10’000 K (~10-11 hPa)

§ Low Earth Orbit (LEO) at 500km:
• Highly ionized gas (O, N, H)
• Atoms density:

§ 3.2x1011 H/m3 (~10-6 hPa) - ECSS-E-ST-10-04C-Rev.1 low solar activity [1.1]

§ Moon
• Outgassing, dust, …

§ Release of gases such as radon and helium resulting from radioactive decay
• Atoms density:

§ Pressure ~10-8 hPa (lunar night, very approximative)

So
ur

ce
: N

AS
A,

 E
SA

, H
ub

bl
e

EE
-5

80
 - 

20
25

 - 
Th

em
e 

2



Vacuum
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§ A large number of molecules:
• Very small when compared to intermolecular distance
• Rectilinear movement between collision
• Elastic collisions: against other molecules or against walls



Vacuum
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§ Mean Free Path 𝜆.
• It is distance that a molecule travel 

between two successive impacts 
with other molecules.

𝜆 =
𝑘 $ 𝑇

2𝜋 $ 𝑃 $ 𝛿"

Where:
𝛿: Molecular diameter [m]
k: Boltzmann constant = 1.381·10-23 [J·K-1]
T: Temperature [K]
P: Pressure [Pa]

̅𝑐 =
8 $ 𝑅 $ 𝑇
𝜋 $ 𝑀

Average velocity (Maxwell-Boltzmann distribution):

Where:
R: Gas constant = 8.31 [J·mole-1·K-1]
M: Molecular mass [g·mole]

For O2



http://tiny.cc/EE580vac

EE580 Space Mechanisms – Vacuum
EE

-5
80

 - 
20

25
 - 

Th
em

e 
2

8

Note:

With N2 molecular diameter = 0.38 nm

http://tiny.cc/EE580vac


§ Mean free path:

§ Average velocity:

§ Particle(*) density:

§ Impacts / surface unit:

Vacuum – Some order of magnitudes
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Molecule 𝛿 [nm] M [g/mole] p [hPa] T [°C] 𝜆 [m] cavg [m/s] 𝜌p [cm-3] nc [1/s/cm2]

N2 0.38 28

1013.25 20 62.2·10-9 471 2.5·1019 3.9·1023

1013.25 1000 270·10-9 981 5.8·1018 1.9·1023

10-6 20 63.1 471 2.5·1010 3.9·1014

10-6 1000 274 981 5.7·109 1.9·1014

H2 0.27 2

1013.25 20 123·10-9 1761 2.5·1019 15·1023

1013.25 1000 535·10-9 3670 5.8·1018 7.1·1023

10-6 20 125 1761 2.5·1010 15·1014

10-6 1000 542 3670 5.7·109 7.0·1014

𝜆 =
𝑘 % 𝑇

2𝜋 % 𝑝 % 𝛿!
̅𝑐 =

8 % 𝑅 % 𝑇
𝜋 % 𝑀

𝜌" = 𝑁#
273.15𝐾

𝑇
𝑝

1	𝑎𝑡𝑚
1

22.4𝑙𝑖𝑡𝑟𝑒𝑠
𝑛$ =

1
3𝜌" % ̅𝑐

Pressure Conversion: 1000 mbar = 1 bar = 1 atm = 105 Pa = 1000 hPa = 760 mm Hg = 760 Torr

(ideal gas)

(*) particles = molecules or atoms



Vacuum
EE

-5
80

 - 
20

25
 - 

Th
em

e 
2

10

§ Mean Free Path.
• It is distance that a molecule travel 

between two successive impacts 
with other molecules.

Geneva – New-York

Earth diameter

Moon - Earth

Spacecraft size

Mean free path of nitrogen molecules at 273.15K



Vacuum – Outgassing of a cavity
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§ Conductance (C):

§ Adding conductances in parallel:

§ Adding conductances in series:

§ In high vacuum:
Ø Molecular flow
Ø Mean free path >> d (d = reference geometric dimension)

§ Conductance in molecular flow:

𝐶! 𝐶"

𝐶!

𝐶"

Q: molecular flux [Pa·m3/s]

𝑄 = 𝐶 % (𝑝 − 𝑝%)

𝐶 = 𝐶& +  𝐶!
1
𝐶
=
1
𝐶&
+
1
𝐶!

𝐶 =
𝜋 % ̅𝑐 % 𝑑'

12 % 𝐿

(Approximations)

[l/s] or [m3/h]

̅𝑐: average velocity (Maxwell-Boltzmann)



Outgassing of cavities
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§ Classification of gaseous flows:
• Viscous flow (continuous): Kn < 0.01
• Transitional flow: 0.01 < Kn < 0.5 
• Molecular flow: Kn > 0.5

§ Laminar flow Re < 2300
§ Turbulent flow Re > 4000

ρ: specific mass of the gas [kg/m3]
η: dynamic viscosity [Pa·s]
v: velocity of the gas flow [m/s]
d: diameter of the pipe [m]
𝜆: mean free path [m]

Knudsen number:

Reynolds number:

𝐾) =
𝜆
𝑑

𝑅𝑒 =
𝜌
𝜂
$ 𝑣 $ 𝑑

Source: Pfeiffer – The Vacuum Technology Book Volume II



Molecular flow
EE

-5
80

 - 
20

25
 - 

Th
em

e 
2

13

§ Mean free path 𝜆 is of the order or larger than the typical
dimensions d of the vacuum vessel

§ Typically around < 10-5 hPa for a vacuum chamber

§ Molecular collisions with the wall of the vacuum envelope become 
preponderant

§ Intermolecular interactions cease to have any effect on the gas 
displacement

§ No more heat exchange by convection => radiation (and conduction) 
only

d



Vapor Pressure
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Paschen Law – Breakdown Voltage
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Pressure Conversion: 1000 hPa = 1000 mbar = 1 bar = 1 atm = 105 Pa = 760 mm Hg = 760 Torr

Source: Dunbar, W.G., High Voltage Design Guide: Aircraft, 
AFWAL–TR–82–2057, January 1983, pp. 31 /
ECSS-E-HB-20-05A “Space engineering - High 
voltage engineering and design handbook”
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Pressure x Spacing [Torr·cm]

Careful with uninsulated 
electrical lines



§ Reading for the vacuum technology:
• Paolo Chiggiato “Outgassing properties of vacuum materials for particle 

accelerators”, Proceedings of the 2017 CERN-Accelerator-School
course on Vacuum for Particle Accelerators, Glumslöv [2.1a]

French only document (dedicated to technical staff)
• Paolo Chiggiato “Dégazage des solides en ultravide : quelques notions de base 

pour les techniciens du CERN”,
CERN ATS/Note/2012/048 TECH (dated 2012-06-01) [2.1b]

§ Some of the coming slides are extracts from the following document:

• The ESA SME Initiative Training Courses (2004)
§ Materials Properties & Associated Test Methods for Non-metallic

Materials: M. Van Eesbeek, ESA/ESTEC/TOS-QM
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§ Atomic Oxygen (ATOX):
• O, O+ et O2+

• High reactivity of O, O+ et O2+

§ Very short life on ground
§ LEO atmosphere: about 96% oxygen
§ O2 molecules broken by UV’s

Chemical and Mechanical Effects (Erosion)
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Atomic Oxygen and Oxygen
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For medium solar activity

ECSS-E-ST-10-04C Rev.1 Table G-2 [1.1]



§ Erosion by Atomic Oxygen (ATOX):
• High reactivity of O, O+ et O2+

§ Erosion, in particular of several organic materials
• KAPTON, MYLAR: high degradation
• PTFE (TEFLON): quite good resistance
• Epoxy: erosion
• Glues: change of color, but low degradation of the gluing resistance
• Paints: highly variable resistance

discoloration by UV

§ Metals: Erosion and oxidation
• Silver: highly degraded by oxidation
• Copper et Copper-Beryllium: strongly oxidized (also on ground)
• Steel, Aluminum, Titanium: good structural resistance

Atomic Oxygen
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Atomic Oxygen
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Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 42

The ESA SME Initiative Training Courses

Silver interconnector flown on 
Eureca. The silver is oxidised. 
Silver loss: 1 micron per 1021
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ESA EURECA

Source: Guido Schwarz



§ NASA LDEF  (Long Duration Exposure Facility)
• Technology spacecraft

§ Ø 4.3 x 9 m
§ 11 metric tons
§ 57 experiences, of which 11 French ones 

(FRECOPA)

• Launch: April 1984
• Retrieval: January 1990

• Circular orbit (inclination 28.5°):
§ 476 km BOL (Beginning Of Life)
§ 330 km EOL (End Of Life)
§ Orientation stabilized by gravity gradient

(long axis always towards Earth)

Study on the impact of space environment
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Study on the impact of space environment
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Chemical effects
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- Totally eroded 

Kapton
- Only Al layer, very 

brittle
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Chemical effects
24

Ag particleEroded surfaceLittle erosion

Earth

Samwel - Space Research 
Journal 2014

Orientation wrt Sun

LDEF satellite: Silver coated PTFE exposed to ATOX
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§ European Retrievable Carrier (EURECA) – ESA
• 4.5-tonne satellite with 15 experiments
• 515 km BOL (Beginning Of Life)
• ~300 km EOL (End Of Life)
• Launch (STS-46): July 1992
• Retrieval (STS-57): July 1993

§ Mir Environmental Effects Payload (MEEP) – NASA
• Installed on MIR station docking module

§ Launch (STS-76): March 1996
§ Retrieval (STS-86): October 1997

§ Materials International Space Station Experiment (MISSE) –
NASA/DoD

• Mounted externally on the International Space Station
• Series of experiments. First launch in 2001.

§ Euro Material Ageing (EMA) – ESA/CNES
• Space Experiment Study on Ageing of MatErial (SESAME)
• Bartolomeo platform (Airbus)
• Attached to ISS European Columbus Module

Other retrievable space experiments
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§ Mechanical Effects
• Thermal expansion (incl. differential thermal expansion)
• Modification of the strength, embrittlement
• Fracture, cracks
• Creep
• Lubrication power, viscosity of lubricants
• …

§ Electrical Effects
• Evolution of the characteristics of the material

§ Resistance
§ Operating point of semiconductors
§ Aging of electronic components
§ …

Thermal Effects
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Thermal Effect
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Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 32

The ESA SME Initiative Training Courses
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Thermal Effect
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Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 33

The ESA SME Initiative Training Courses

F E P / V D A   P r i s t i n e

VDA layer at BOL

14 days aged at 200 °C 44.9 days aged at 200 °C TC –100 °C/+100 °C

Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 33

The ESA SME Initiative Training Courses

F E P / V D A   P r i s t i n e

VDA layer at BOL

14 days aged at 200 °C 44.9 days aged at 200 °C TC –100 °C/+100 °C

Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 33

The ESA SME Initiative Training Courses

F E P / V D A   P r i s t i n e

VDA layer at BOL

14 days aged at 200 °C 44.9 days aged at 200 °C TC –100 °C/+100 °C

Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 33

The ESA SME Initiative Training Courses

F E P / V D A   P r i s t i n e

VDA layer at BOL

14 days aged at 200 °C 44.9 days aged at 200 °C TC –100 °C/+100 °C

Source: ESA/M. Van Eesbeek

VDA layer at BOL

14 days aged at 200°C 44.9 days aged at 200°C T.C. -100°C / +100°C

Vapor Deposited Aluminum (VDA)
On Fluorinated Ethylene Propylene (FEP)



§ Source of radiation in space

Radiations
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ESA UNCLASSIFIED - Releasable to the Public Christian Poivey | 16/05/2019 | Slide  4

Sources of radiation environment in Space

Source: C.Poivey, Radiation Effects in 
Space Electronics (ESA 2019), 



What are the sources of highest energy radiations?
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A. Solar radiations
B. Cosmic radiations
C. Earth trapped particles



§ Picture: Comet Lulin
• Photo taken by Swift spacecraft (NASA + Italy and UK, detection of 

gamma-ray bursts)
• False color image

§ Red: X-ray emissions (ions-gazes interactions)
§ Blue and green: ultraviolet/optical emissions (OH molecules)
§ The cloud of water shed by the comet is excited by the solar 

wind, generating X-ray emissions.

Solar Wind
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Exercise 2.1:
Solar Wind

§ Picture: ESA/NASA SOHO (Solar and Heliospheric Observatory), 
the effect of solar Coronal Mass Ejection resulting in a strong 
high energy proton event. Proton impinging on the imaging sensor 
of the instrument are observed as bright pixels or streaks.

SOHO’s view of the 11 May 2024 solar stormSo
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Direction 
of motion

200’000 km

Sunward



Ionizing Radiations: around the Earth
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Magnetosheath

Deflected solar wind particles

Incoming solar wind particles

Van Allen radiation belt

Solar wind

Bow shock
Polar cusp

Earth's atmosphere 0 - 100 km

Magnetotail

Plasma sheet

Neutral sheet

Structure of Earth Magnetosphere

Source: Division of Geomagnetism, DTU Space

South Atlantic Anomaly (SAA)

e-, p+, X-rays, h𝜈



Ionizing Radiations: Van Allen Belts
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Trapped Radiation Belts, main characteristics
• Inner belt is dominated by a population of energetic 

protons up to ~400 MeV energy range

• Inner edge is encountered as the South Atlantic 
Anomaly (SAA)

• Dominates the Space Station and LEO spacecraft 
environments

• Outer Belt is dominated by a population of energetic 
electrons up to 7 MeV energy range

• Frequent injections and dropouts associated with 
storms and solar material interacting with 
magnetosphere

• Dominates the geostationary orbit environment 
(mostly telecom) and Navigation (Galileo, GPS) 
orbits, as well as certain Science missions in highly 
elliptic orbits (XMM-Newton, INTEGRAL)

(Richard Bertram Horne Nature Physics 3, 2007)

ESA UNCLASSIFIED - Releasable to the Public Christian Poivey | 16/05/2019 | Slide  5

• Also known as Van-Allen 
belts

• They were discovered during 
the first space missions

• Electrons and protons 
trapped in Earth magnetic 
field (Lorentz force)

1- Trapped Radiation Belts

NASA, Radiation Belts Storm probe missionSource: NASA
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Inner belt
• Protons up to ~400 MeV

Outer belt
• Electrons up to 7 MeV

Source: NASA

James Alfred Van Allen



Ionizing Radiations: Van Allen Belts
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Source: https://commons.wikimedia.org/wiki/File:Van_Allen_radiation_belt.svg

58’000 km

640 km

South Atlantic Anomaly
(200 km from Earth surface)



§ Individual events:
Exceptional solar activity (solar flares)

§ Proton trapped in Earth orbit
Worst case event:

• 3·1010 protons (>30MeV) / cm2

From ECSS-E-ST-10-04C Rev.1 [1.1]

Solar Wind: Electrons and Protons (models)
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Source: https://en.wikipedia.org/wiki/File:L_shell_global_dipole.png
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Solar Wind: Particles
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§ Aging of materials:
• Embrittlement
• Modification of structure
• Modification of material properties
• Modification of thermo-optical properties
• …

§ Health effects
§ Degradation of electronic components
§ Electrostatic charges of insulators, surface 

charging

Ionizing Radiations: material degradation
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Why Are We Concerned by Radiation in Space ?

• There is an abundance of 
high-energy particles in 
space

• Space radiation can be 
dangerous for humans in 
space.

• Space radiation 
environment may also be 
dangerous for materials 
and electronic components 
used in spacecraft

SOHO, the effect of solar Coronal Mass Ejection 
resulting in a strong high energy proton event. 
Proton impinging on the imaging sensor of the 
instrument are observed as bright pixels or streaks. 

High-energy particle impact on Schottky diode.

(J. George NSREC Radiation Effects Data 
Workshop 2013)

Picture: High-energy particle 
impact on Schottky diode
Source: J. George NSREC Radiation 
Effects Data Workshop 2013



§ Dose (cf. ECSS-E-ST-10-04C Rev.1 [1.1]):
• A spacecraft is exposed to high flux of charged particles, in particular when 

crossing the Van Allen Belts.
§ Electrons (mainly trapped by the terrestrial magnetic field)

• Energies of several 10th of keV
• High fluctuation of the electron density (factors from 1 to 100) depending on 

day/night, solar activity, ...
§ Solar Wind

• Protons: 95%
• Alpha-particles: 4%
• Others (C, N, O, Ne, Mg, Si, Fe, …): 1%
• Average velocity of the particles 468 km/s, frequent high-speed streams at 

700 km/s, sometimes > 1000 km/s (high solar activity).
• Specific characteristics for each missions

§ Exposition data are parts of the requirements for a mechanism
(e.g.: the total ionizing dose - TID - for the mission shall be 5·106 rad)

§ Such an exposition is higher than the allowed dose for some materials, in 
particular for electronic components Shielding is required

Ionizing Radiations: material degradation
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Materials and Processes Division
ESA/ESTEC/TEC-QM

TEC/QMC 18

The ESA SME Initiative Training Courses

C h a r g e d  P a r t i c l e s  E n v i r o n m e n t

Radiation Source Nature Energy Flux
(part.cm-2s-1)

Characteristics Remarks

Galactic Cosmic
Rays

Protons (~90%)
α(He-nucleus) &
Heavy Ions (10%)

10-2 GeV-1010 GeV 2-5 Least Significant for
materials

Solar Wind Protons (96%)
α and O-ions
Electrons

~ 1KeV
~ 1 KeV
~20-40 eV

p+ 2.108 at 1A.U. - Neutral plasma
- Low energy restricts hazards

to surface

No influence on
circumterrestrial orbits at
altitudes<6.6 RE

Solar Cosmic
Events (Flares)

Protons (95%)
Heavy Ions

1-100 MeV
(below 10 MeV
spectrum ~E-1..2,
beyond ~E-5)

Precise prediction
of solar activity
cannot be made

- E and N particles varies by
events

- Omnidirectional isotropic

Trapped Radiation
1.Inner Belts (1.2-
3.2 RE)

2.Outer Belts
(3-7 RE)

Protons and
electrons

Protons and
electrons

Ep+ < 30 MeV (90%)
Ee- < 5MeV (90%)

All Ep+<1MeV

p+ 5.105 E>1 MeV
e- 2.107 E>.5MeV

p+ 109 E>10KeV
e- 5.2.107 e-5xE

with E in MeV

- Omnidirectional Isotropic
- Flux varies with magnetic

latitude
- Spectra are very variable

with solar activity (GEO)
- Fluxes not entirely

symmetric in Longitude
(SAA for protons)

- Most important for orbits
at altitude <6.6 RE

- High E protons in inner
belts only
- Atomic displacements are
possible at LEO in SAA

Aurora Electrons and
protons

e- 2KeV<E<20 KeV
p+ 80<E<800 KeV

e- 1010 during
storms
p+ <107

- Observed between 65o and
70o N and S magnetic
latitude at altitudes between
100 and 1000 km

- Very much time dependent
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Ionizing Radiations: charged particles environment
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Solar Wind: Electromagnetic radiation
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E f f e c t  o f  R a d i a t i o n  o n  T e n s i l e  
s t r e n g t h  o f  M y l a r

U.V. Radiations: an example, Mylar
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§ For electromagnetic waves, the flux is 
reduced behind a metallic wall:

Ionizing Radiations: shielding (ECSS-E-ST-10-12C [2.2])
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𝐼(𝜆) = 𝐼* $ 𝑒+,-.

Where
§ µ: attenuation coefficient

• Depends on the material
• Depends on the energy (wavelength)

§ For particles, absorption depends on 
other parameters

• Type of particles
• Charge
• Energy (velocity of the incident particle)
• Material (density, nuclear disintegration)

§ The energy transferred to the human 
body depends on the radiation type, 
the organs and tissues and the 
geometry

Particle flux

w(x)

x

Electromagnetic wave

I0 I(𝜆)

𝜆

w(x)

x

µ



Ionizing Radiations: Mass attenuation coefficient
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§ Various physical phenomena depending on the energy of the incident radiation

Source: https://en.wikipedia.org/wiki/Mass_attenuation_coefficient

𝜇
𝜌/

Mass attenuation 
coefficient:

𝜌/ mass density

x-rays,
gamma rays,
bremsstrahlung
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R a d i a t i o n  S e n s i t i v i t y  o f  P o l y m e r s

PTFE

FEP
Filled Siloxanes

Unfilled Siloxanes

Polyimides

Nylon

Polyurethane

Polyethylene
Minor Noticeable Significant

Absorbed dose (Gy)
105 106 107

Ionizing Radiations: sensitivity of polymers
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§ Theme 2 – Part 2: Environmental constrains, continued
§ Theme 3: Systems Engineering, Project Management and Quality 

Assurance

§ Exercise 2.1

Next week
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